Monatshefte für Chemie 113, 163-170 (1982)

The Ternary System Nickel-Aluminum-Carbon

Julius C. Schuster^a and Hans Nowotny^{b,*}

^a Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Austria

^b Institute of Materials Science, University of Connecticut, Storrs, CT 06268, U.S.A.

(Received 4 August 1981. Accepted 18 August 1981)

Phase equilibria in the ternary system nickel—aluminum—carbon were determined. The phase boundaries are given for an isothermal section at 1 000 °C. No ternary phase occurs, but Ni₃Al (γ') exhibits a solubility for carbon up to 7-8 at%. NiAl(β) also dissolves carbon (ca. 3 at%).

(Keywords: Carbides, ternary; Phase diagram, Al-Ni-C)

Das ternäre System Nickel-Aluminium-Kohlenstoff

Die Phasengleichgewichte im ternären System Nickel—Aluminium—Kohlenstoff wurden für den isothermen Schnitt bei 1000 °C bestimmt. Die Löslichkeiten und Phasengrenzen werden angegeben. Es tritt keine ternäre Phase auf, aber Ni₃Al(γ') löst bis zu 7—8 at% Kohlenstoff. NiAl(β) löst ebenfalls Kohlenstoff (ca. 3 at%).

Introduction

The phase relationships in several transition metal—aluminum—carbon systems have recently been investigated¹. There are only a few data for the ternary nickel—aluminum—carbon system although it is of considerable interest with regard to Ni-based superalloys. In this context it was to clarify whether Ni₃AlC_{1-x} is a distinct ternary phase or a solid solution of carbon in the binary Ni₃Al(γ')phase, with partially filled L 1₂ type structure.

The binary systems nickel—aluminum, nickel—carbon and aluminium—carbon are well established². *Hütter* and *Stadelmaier*³ found that Ni₃Al dissolves up to 5.8 at% carbon. They reported a lattice parameter of 0.3603 nm for Ni₃AlC_{1-x} as compared to 0.3573 nm for the binary Ni₃Al(γ')-phase. No data on the temperature of the alloy

preparation were given and it was not stated, if Ni_3AlC_{1-x} is an isotypic, but separate ternary phase as indicated by *Fritscher*⁴ in a meltingsurface diagram, or if Ni_3AlC_{1-x} is an extended carbon solution in the binary $Ni_3Al(\gamma')$. $Ni_3Al(\gamma')$ and Ni_3AlC_{1-x} were never observed simultaneously in molten specimens⁴.

Experimental

Seventy alloys were made from nickel powder (3 N, Alpha Ventron Corp.), a luminum powder (3 N 8, Alpha Ventron Corp.) and graphite (pure by emission spectrograph, Le Carbone Lorraine). Appropriate mixtures were cold pressed and arc melted under purified argon. From these alloy buttons thin pellets were cut which were annealed either in a vacuum furnace ($p \leq 10^{-6}$ Torr) at 1000 °C for 170 h or in sealed, evacuated quartz tubes at 700 °C for 340 h. The surface of the annealed specimens were cleaned, polished, etched (echant 1 part HNO₃ + 2 parts HCl + 3 parts lactic acid) and examined by metallography and X-raydiffractometry. Hardness measurements were made using the *Vickers*-technique.

Results and Discussion

No ternary phase has been found, however, γ' dissolves carbon, forming a structure arrangement such as a defect perovskite carbide. The homogeneous range of the γ' -phase field was determined by lattice parameter measurements (Tables 1 and 2). The increase of the γ' -lattice parameter in the binary system Ni—Al with decreasing Ni/Al ratio is fairly regular. The lattice parameters for the vertices $[\gamma'(\gamma' + \gamma + C)]$ and $[\gamma'(\gamma' + \beta + C)]$ were taken from alloys in the resp. three phase fields (Table 2). The increase of the lattice parameter of the γ' -phase with the carbon content was determined, considering the fact that an alloy Ni_{.785}Al_{.165}C_{.05} does not contain free graphite (see Table 2) and by

Ni	Al (At%)	<i>a</i> [nm]
-0	00	0.9766 + N(A)(0)
70	30	$0.3566 + N1AI(\beta)$
72	28	0.3564
73	27	0.3561 .
74	26	0.3560
75	25	0.3557
76	24	0.3555
77	23	0.3553
88	12	0.3533
100	0	0.3516

Table 1. Lattice parameter of binary Ni-Al-alloys in the Ni rich region

Composition (At%) Ni Al C		X-ray results a [nm] a [nm]			Metallographic results	
75	25		0.3557			(prim. ß decomp.)
67.5	27.5	5	0.3577			mainly $\gamma' + \gamma'$
70	25	5	0.3578			single phase γ'
75	20	5	0.3589	0.3544		two phase;
		_				peritect. prim γ'
78.5	16.5	5	0.3589	0.3543		two phase;
90	5	5		0 3594		peritect. prim. γ
65	25	10	0.3577	0.0024	+ C	mainly γ' + trace β +
00	-0		0.0017		10	graphite
67.5	22.5	10	0.3590		+ C	mainly γ' + trace
						graphite
72.5	17.5	10	0.3589	0.3546	+ C	$\gamma' + \gamma + \text{graphite}$
56	29	15	0.3575		$+\beta + C$	β -lamellae,
60	95	15	0.9579		1010	$+\gamma$ + graphite
69	20 93	15	0.3373		+p+0 +C	γ + trace β + graphite
64	21	15	0.3585		+ C	$\gamma + \text{graphite}$
66	19	15	0.0000		10	$\gamma' + \gamma + graphite$
66	22.5	17.5	0.3583		+ C	$\gamma' + graphite$
55	25	20	0.3573		$+\beta + C$	
60	20	20	0.3583		+C	γ' + graphite
72	8	20		0.3517		γ (porous) + graphite
57.5	18.5	25	0.3581		+ C	$\gamma' + \text{graphite}$
50 ,	15	35	0.3588	0.3544	+C	$\gamma' + \gamma + \text{graphite}$
b) 10	$00 ^{\circ}\mathrm{C}$					
75	25		0.3557			$(\text{prim.} \beta \text{ decomp.})$
67.5	27.5	5	0.3575			mainly γ' + trace
70	95	~	0.9500			prim. β
70 79 ह	20 16 5	5 5	0.3082	0.2547		γ single phase
90	10.5	5 5	0.5562	0.3547		$\gamma + \gamma$
65	25	10	0.3578	0.0000	+ B + C	γ single phase (porous)
67.5	22.5	10	0.3581		1910	prim. graphite $+\gamma'$
72.5	17.5	10	0.3583	0.3546	+ C	P
81	9	10		0.3537	+ C	γ (porous) + graphite
56	29	15	0.3578		$+\beta + C$	prim. graphite $+$
58	27	15	0.3580		$+\beta + C$	prim graphite \pm
		10	0.0000			β dendrites in γ'
60	25	15	0.3578		$+\beta + C$	prim. graphite + 3 dendrites in v'

a) 700 °C

Composition (At%) Ni Al C			X-ray results a [nm] a [nm]			Metallographic results	
<u></u>		15	0.2580		+ C	v' Laranhita	
64	23	15	0.3570		+ C	$\gamma' + \text{graphite}$	
66	19	15	0.3582	0.3545	+ C	$\gamma' + \gamma + \text{graphite}$	
60	$\tilde{20}$	$\hat{20}$	0.3583		+C	$\gamma' + \text{graphite}$	
72	8	20		0.3547	+ C	$\gamma + \text{graphite}$	
50	25	25	0.3579		$+\beta + C$	prim. graphite in sek β-matrix	
57.5	18.5	25	0.3581		+ C	$\gamma' + \text{graphite}$	
63	7	30		0.3543	+ C	$\dot{\gamma} + \text{graphite}$	
50	15	35	0.3582	0.3546	+ C		

Table 2 (continued)

Fig. 1. γ' -Phase field as determined by the binary data and the intersection of isoparametric curves with $[(\beta + \gamma' + C), (\gamma' + C)]$ and $[(\gamma' + C), (\gamma' + \gamma + C)]$ -phase boundaries at 1000 °C

Fig. 2. Lattice parameter dependency of NiAl(β)-phase with Ni/Al-ratio (a) and carbon content (b) at 1000 $^\circ C$

the assumption that the variation of the lattice parameter with increasing carbon content is about the same for the Ni₃Al(γ')-phase and the Ni(s.s.)(γ)-phase. From these data one can construct isoparametric lines for the various compositions in the Ni₃Al(γ')-phase field (Fig. 1). The intersection of the isoparametric curves for the appropriate lattice parameters with the phase boundary tie lines, determined by X-ray and metallographic analysis, yield the composition of the vertices

Table 3. Results of X-ray analysis of Al-rich alloys and lattice parameter of $NiAl(\beta)\text{-phase containing alloys}$

a) 700 °C

Composition (At%) Ni Al C			Phases	detected (a	lattice para	meters in nm)
25	$75 \\ 70$		$NiAl_3$		NI; AI		
30 90	10 69		MIAI3		T IN 12 I M 3		
00 49	62 59		NG A I	0.9860	\perp Ni Al		
46	50		NGAI	0.2000	T 1 12 A13		
40 50	50		NGAI	0.2003			
50	30 46		NGAL	0.2007			
04 60	40		NIAI NJAI	0.4011			
10 5	40 50 5	ຄວ	INLAL NI: A I	0.2805	1 N; A1	1.0	
19.0	08.0 47.0	22	NIAI3 NI: A I		$+ 1 N_2 A_3$	+0	
10.8	47.2	31	NIAI3	0.0004	$+ M_2A_3$	+0	
49.0	49.5	1	NIAI NIAI	0.2884			
49	49	Z	NIAI NI AI	0.2879			
48	48	4.	NIAI N'AI	0.2878		+0	
38	57	5	NIAI NIAI	0.2872		+0	
42.8	52.Z	5	NIAI N'AI	0.2885		+C	
47.5	47.5	5	N1AI N1AI	0.2880		+C	
57	38	5	NIAI	0.2863		+0	
40.5	49.5	10	NIAI	0.2883		+C	
45	45	10	N1A1	0.2879		+ C	
54	36	10	NIAI	0.2864		+ C	
56	29	15	NiAl	0.2858	$+ N_{13}AI$	+C	
b)	1 000 °	С					
38	62				Ni ₂ Al ₂	a = 0.4036	c = 0.4876
42	58		NiAl	0.2858	$+ Ni_{3}Al$		
46	54		NiAl	0.2871	. 0		
50	50		NiAl	0.2887			
54	46		NiAl	0.2879			
60	40		NiAl	0.2867			
70	30		NiAl	0.2855	+ Ni ₃ Al		
15.6	46.9	37.5	Al_4C_3		$+ Ni_{2}Al_{3}$	+ C	
49.5	49.5	1	NiAl	0.2884	- 2 0		
49	49	$\overline{2}$	NiAl	0.2880			
48.5	48.5	3	NiAl	0.2876			
48	48	4	NiAl	0.2875		+ C	
38	57	$\overline{5}$	NiAl	0.2876		+ C	
47.5	47.5	5	NiAl	0.2876		+ C	
57	38	5	NiAl	0.2864		+ C	
36	54	10	NiAl	0.2865		+C	
42.5	42.5	15	NiAl	0.2876		+C	
65	25	10	NiAl	0.2856	+ Ni ₂ Al	+C	
56	$\overline{29}$	15	NiAl	0.2855	$+ Ni_{3}Al$	+ C	
58	27	15	NiAl	0.2856	$+ Ni_3Al$	+ C	
50	25	25	NiAl	0.2856	$+ Ni_3Al$	+ C	

168

Fig. 3. Isothermal section Ni—Al—C at 1000 °C

 $\begin{array}{l} \left[\gamma'\left(\gamma'+\beta+C\right)\right] \text{ at } 700 \ ^\circ C \ \mathrm{Ni_{.70}Al_{.28}C_{.02}} \text{ at } 1\,000 \ ^\circ C \ \mathrm{Ni_{.695}Al_{.275}C_{.03}} \text{ and} \\ \left[\gamma'\left(\gamma'+\gamma+C\right)\right] \text{ at } 700 \ ^\circ C \ \mathrm{Ni_{.69}Al_{.23}C_{0.08}} \text{ and at } 1\,000 \ ^\circ C \ \mathrm{Ni_{.705}Al_{.22}C_{.075}}. \end{array}$

The intensity data of the X-ray diffractograms were not accurate enough to decide whether all carbon atoms are positioned in the octahedral voids of the γ' -phase or if there is a more complex filling type not excluding partial substitution as indicated by the relatively constant ratio Ni/(Al + C).

The solubility of carbon in the NiAl(β)-phase, is of particular interest (Fig. 2a, b) because of the anomalous behavior of the lattice parameter in the β -phase NiAl. The maximum (or peak) of lattice parameter in the β -phase was reported to be at 50.8 at% Al by *Cooper*⁵, who explained the peculiar dependency of the lattice parameter on the Ni/Al ratio by partial substitution and creation of vacancies on the atomic sites.

With increasing amount of carbon the corresponding lattice parameters decrease. As the voids in the β -NiAl phase are small, substitution on the metal sites is likely. If the singularity (peak instead of a maxi-

170 J.C. Schuster and H. Nowotny: The Ternary System Ni-Al-C

mum) would be real, a split of the two phase area [NiAl(C) solid solution + graphite] has to be assumed. This point needs more exploration. Lattice parameters of alloys in the three-phase field $(Ni_2Al_3 + \beta + C)$ and $(\beta + \gamma' + C)$ are presented in Table 3.

Although according to literature² Ni_2Al_3 exhibits a composition range of several at% in the binary NiAl system, no lattice parameter variations were detected. Also carbon containing specimens did not show any change in the lattice parameter compared to the binary alloy.

Fig. 4. Melting surface of the Ni-rich corner of the system Ni-Al-C

Analogous results were found for NiAl₃ and Al₄C₃. The isothermal section incorporating all these data is shown in Fig. 3. Having shown, that Ni₃AlC_x does not exist as a distinct ternary phase a modified melting surface diagram of the Ni-rich corner of the Ni-Al-C system is proposed (Fig. 4).

Hardness measurements in the γ' -phase region gave HV₅₀-values of 300-350 kg/mm² for binary alloys and 440-480 kg/mm² for ternary alloys, which is somewhat lower than the hardness values given by *Inoue*⁶ for nonequilibrium FeNiAlC-alloys with partially filled L1₂-structure.

Acknowledgement

This work has been supported by the National Science Foundation through grant No. DMR 77-20504 to the University of Connecticut. The authors gratefully acknowledge the award.

References

- Schuster J. C., Nowotny H., Vaccaro C., J. Solid State Chem. 32, 213 (1980); Schuster J. C., Nowotny H., Z. Metallk. 71, 341 (1980) and 72, 63 (1981).
- ² Handbook of Metals, Vol. 8, 8th edition (1973); ASTM Powder Diffraction Pattern File.
- ³ Hütter L. J., Stadelmaier H. H., Acta Met. 6, 367 (1958).
- ⁴ Fritscher K., 2nd Conf. on in Situ Composites, Boston (1978).
- ⁵ Cooper M. J., Phil. Mag. 8, 805 (1963).
- ⁶ Inoue A., Kojima Y., Minemura T., Masumoto T., Trans. JIM 20, 468 (1979).